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ABSTRACT
Bézier curves and surfaces are very important in many areas, especially the manufacturing 
and aerospace. Surface inspection through visualisation is required to create high-quality 
surfaces and reduce unwanted products. The smoothness of the surface can be quantified 
using curvature. In this research, different surfaces types will be generated using the quintic 
trigonometric Bézier basis function. All the surfaces will be evaluated and analysed using 
Gaussian and mean curvature. Finally, curvature for each surface type will be mapped 
using colour-coded mapping and can be further characterised based on their positive and 
negative curvature values. This insight can also help the designer produce a smooth surface 
and develop quality products.
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INTRODUCTION

Bézier curve is one of the many manifestations in Computer Aided Geometric Design 
(CAGD). Numerous studies of the Bézier curve involving the new creation of the basis 

function have been come to light and 
captured much attention from plentiful of 
researchers. Diverse creation of the new 
basis function from A-class of Bézier-like 
(Chen & Wang, 2003) to trigonometric 
Bézier (Tan & Zhu, 2019, Ammad et al., 
2022) to hybrid Bézier (Bibi et al., 2021), 
and the recent one is fractional Bézier curve 
(Zain et al., 2021).
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For example, the idea of the quintic trigonometric Bézier curve (Misro et al., 2017) 
has been applied to several applications, including curve fitting (Adnan et al., 2020), 
continuous surface construction (Ismail & Misro, 2020), and analysis of the adjustable 
parameter (Misro et al., 2019). The authors also included the importance of the curvature 
in determining a fair curve.

According to Bartkowiak and Brown (2019), the curvature is an indicative measure 
of the smoothness of the topological surface. Thus, the curvature is one of the essential 
measures to interpret the geometry appearance of curves and surfaces in geometric 
modelling. For surface modelling, Gaussian and mean curvature can be derived from 
fundamental concepts in differential geometry, as discussed in Pressley (2010) and Farin 
(2014). 

In 2003, Zheng and Sederberg derived Gaussian and mean curvature formulas for 
rational Bézier tensor-product and triangular patch. Different computational approaches 
for local estimation of Gaussian and mean curvature are discussed with analytical values 
of geometric objects are compared in Magid et al. (2007). Meanwhile, a new method 
called local surface fitting for estimating surface curvature has been described by Razdan 
and Bae (2005).

Curvature analysis or surface interrogation gives an understanding of how the surface 
behaves. A few methods can illustrate the curvature on the surface for the curvature analysis, 
including colour mapping, as explained in Hahmann (1999). Moreover, Dill (1981) and 
Beck et al. (1986) discussed the colour mapping technique for surface curvature analysis. 
Indeed, both authors agreed that the colour mapping approach is convenient for illustrating 
the surface curvature.

The shape of surfaces plays a vital role in the manufacturing industry and geometric 
modelling. However, there are some possibilities in the manufacturing industry that residual 
stresses can cause deformation thus produce damaged products (Garcia et al., 2021). 
Apart from the manufacturing industry, the aerospace industry will also be affected by this 
problem, creating significant loss deprivation. Thus, checking the quality of the product’s 
surface design is very crucial. 

Due to the lack of research in surface curvature analysis, this paper will focus on 
determining Gaussian and mean curvatures on different types of biquintic trigonometric 
Bézier surfaces. This research will also visualise the surface curvature using colour mapping 
and classify each Gaussian and mean curvature of different biquintic trigonometric Bézier 
surfaces based on positive and negative curvature values. 

METHODOLOGY
This section explains the properties of the quintic trigonometric Bézier curve, such as 
endpoint terminal, convex hull, symmetry, and geometric invariance. Then, the idea of the 
quintic trigonometric Bézier curve is extended to construct different surfaces such as tensor 
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product, swept surface, swung surface, and ruled surface. This section also introduces the 
Gaussian curvature, mean curvature, and curvature colour mapping methods.

Quintic Trigonometric Bézier Curve 
Quintic trigonometric Bézier curves with two shape parameters are introduced by Misro 
et al. (2017), indicating that the shape parameters can permit flexibility on the curve’s 
shape aside from describing the curve’s geometrical characteristics. In addition, geometric 
characteristics can maintain the curve’s shape by adjusting the parameters’ values, in which 
altering the control points can make it more convenient. For example, quintic trigonometric 
Bézier curve with two shape parameters and six control points 𝑃𝑖, 𝑖=0,1,2,3,4,5 in ℝ2 or 
ℝ3 is defined as Equation 1:

(1)

The quintic trigonometric Bézier basis functions for arbitrarily real values of shape 
parameters α and β, where −4 ≤ 𝛼, 𝛽 ≤ 1, and for 𝑡 ∈ [0,1] are given as Equation 2:

(2)

where 𝑓𝑖 is the basis functions and 𝑃𝑖 is the control points for the quintic trigonometric 
Bézier with 𝑖=0,1,2,3,4,5 in ℝ2 or ℝ3 as shown in Figure 1.

Figure 1. The quintic trigonometric Bézier polynomial basis functions
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Endpoint Terminal. The endpoint terminal or curve’s endpoints are represented by the 
first and last control points, which can be defined as Equation 3:

(3)

Convex Hull. Convex hull property for the quintic trigonometric Bézier curve for a given 
point 𝑃𝑖, where 𝑖=0,1,2,3,4,5 in ℝ2 or ℝ3, must lie inside its control point polygon as 
demonstrated in Figure 2. Therefore, a complete trigonometric Bézier curve segment must 
contain within its control polygon, spanned by space 𝑃0,  𝑃1,  𝑃2, 𝑃3,  𝑃4,  and 𝑃5.

Figure 2. The quintic trigonometric Bézier curve’s projection inside the convex hull

Symmetry. The identical Bézier curve shape will be produced if the control points are 
defined in the opposite order. To be specific, {𝑃5,  𝑃4,  𝑃3,  𝑃2,  𝑃1,  𝑃0} and {𝑃0,  𝑃1,  𝑃2,  𝑃3,  𝑃4,  𝑃5} 
define the same quintic trigonometric Bézier curve in distinct parameterisation Equation 4:

𝑧(𝑡 ; 𝛼, 𝛽 :𝑃0,  𝑃1,  𝑃2,  𝑃3,  𝑃4,  𝑃5) = 𝑧(1−𝑡 ; 𝛼, 𝛽 : 𝑃5,  𝑃4,  𝑃3,  𝑃2,  𝑃1,  𝑃0) (4)
with −4 ≤ 𝛼, 𝛽 ≤ 1 and 0 ≤ 𝑡  < 1.
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Geometric Invariance. Geometric invariance is another property of the quintic 
trigonometric Bézier curve that remains unchanged when its control points are rotated and 
translated. Thus, the curve’s shape is independent of the coordinate system used, which 
fulfils Equations 5 and 6:

(5)

(6)

where ,  m is an arbitrary vector in or , while T is an 
arbitrary matrix with d = 5 or 6 depending on the initial value of i.

Quintic Trigonometric Bézier Surface 

A construction of quintic trigonometric Bézier surface, as mentioned by Ammad and Misro 
(2020), can be expressed mathematically as Equation 7:

(7)

where are the control points with degree m 
and n. This surface with domain  also has the shape parameters  

and of the basis functions and , respectively.
Note that swept, ruled, and swung surfaces are some examples of advanced surface 

construction techniques typically available in CAD. Furthermore, the CAD-generated 
surfaces are the tensor product’s representation of the biquintic trigonometric Bézier 
surface.

Tensor-Product Surface. One of the essential approaches to construct a surface on a 
rectangular domain is tensor-product surfaces. For instance, the biquintic trigonometric 
Bézier surface is generated using the same Equation 7 with the same degree, where m=n=5. 
In addition, four shape parameters ( )  and 36 control points are required to 
generate this surface. Here, the range of the parameters is between -4 to 1 for both u and 
v directions.
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Swept Surface. A swept surface can be developed from the basic idea of the biquintic 
trigonometric Bézier surface. As demonstrated in Figure 3, the surface is created by moving 
the section curve along the trajectory curve. A cylindrical surface is also formed when the 
sweep surface’s path curve is straight. However, Chang (2016) claimed that the generated 
sweep surface is a revolution’s surface if the path curve is a circular arc. As a result, all 
revolving and cylindrical surfaces are characterised as unique examples of sweep surfaces.

Let G1(u) be the path curve with shape parameters α1, β1 and G2(v) be the trajectory curve 
with α2, β2 as the shape parameters. Then, both curves produce Equation 8:

  

,
(8)

Figure 3. The construction of a swept surface using trajectory curve and section curve

Then, the general equation of the swept surface based on Ammad and Misro (2020) as 
Equation 9:

(9)

is a  dimensional matrix of function v, representing an identity matrix. 
Consequently, the general expression can be expressed as Equation 10:
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(10)

Using control points and shape parameters from Equation 10, a swept surface with 
can be constructed as Equation 11:

(11)

Swung Surface. According to Piegl and Tiller (1996), a swung surface is a generalisation 
of a surface revolution. Hu et al. (2018) stated that the profile curve is swung along 
an axis to create this type of surface, as shown in Figure 4. Assuming that Equation 
8 is the profile curve and trajectory curve in the xz and xy-plane, respectively, 
with the control points,  and , where 

. Then, the formal definition of the swung surface with 
 is defined as Equation 12:

(12)

where the control points, and 
is the scaling factor.

Figure 4. The construction of a swung surface using profile curve and trajectory curve
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Ruled Surface. The representation of the quintic trigonometric Bézier surface can be 
enhanced to a ruled surface. A surface is called a ruled surface if the two opposite curves 
that are not necessarily straight lines are generated by a generator or ruling in a straight-
line motion. Let P(u) and Q(u) be the two directrices of curves in u-direction, while R(u)
is the ruling line. Then, the parametric representation of the ruled surface, , is given 
by Equation 13:

(13)

If , the equation is then extended to a quintic trigonometric Bézier 
(Equation 14): 

 

,
(14)

These imply that . As a result, the general equation 
with respect to the ruled surface concerning the tensor product of biquintic trigonometric 
Bézier surface is given by Equation 15:

(15)

where 

Curvature and Surface Curvature

Curvature is a measure of how sharply a curve bend. The curve’s curvature is a measurement 
of the rate it shifts direction at a particular location. There are various formulas for 
calculating a curve’s curvature. The basic definition is as Equation 16:

(16)

where s is the arc length and is the unit tangent. Equation 16 only can be used to calculate 
the curve’s curvature, where the equation needs to be extended to evaluate surface curvature. 
Therefore, several approaches must be applied to calculate the curvature of a surface. 
The classical differential geometry concepts of the first and second fundamental forms 
are commonly used to determine the Gaussian and mean curvature of a surface. Based on 
Pressley (2010), Beck et al. (1986) and Farin et al. (2002), the first fundamental form that 
can be derived from Equation 7 is given by Equations 17 and 18:
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(17)

where

(18)

Then, the equation for the second fundamental form is given by Equations 19 and 20:

(19)
where

(20)

in which the unit surface normal, n is as Equation 21:

(21)

Gaussian Curvature. Gaussian curvature, K is a product of the principal curvatures, 
K = k1k2. This curvature depends on the first and second fundamental form coefficients, 
which can also be expressed in E, F and G and their derivatives. The value K depends only 
on the intrinsic geometry of the surface. It implies that if the surface is deformed, it does 
not alter its length measurement (Farin et al., 2002). The Gaussian curvature may carry 
the property that helps evaluate the surface, which can be a saddle, convex and concave. If 
the surface shape resembles a saddle, one of the main curvatures is positive, and the other 
is negative.  Both principal curvatures are negative for the convex surface, while the main 
curvatures are positive if the surface is concave. The formula for the Gaussian curvature 
is given by Equation 22:

(22)

Mean Curvature. The mean curvature of a surface, H, is an extrinsic curvature measure in 
differential geometry describing the curvature of an embedded surface locally in a region 
of space such as Euclidean space. The coefficients of the first and second fundamental 
forms can also be used to express mean curvature. It resembles the average of the principal 
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curvatures, . If Η = 0, the result yields minimal surface. Then, the 
alternative formula for the mean curvature is as Equation 23:

(23)

Curvature Colour Mapping

There are several methods for visualising surface curvature that has been investigated. 
Surface analysis, also known as interrogation, is a crucial component of CAD and computer 
graphics in detecting surface flaws and visualising a surface (Hahmann, 1999). This method 
can analyse the geometry surface features such as curvature. Normal vectors, contour lines 
and colour-coded mapping are three of the most widely utilised methods (Seidenberg et al., 
1992). Previously, Dill (1981) tested the curvature colour mapping on 1980 Pontiac and 
Oldsmobile automotive components, which are body hood and front fender, respectively, 
to inspect their smoothness. Besides, as Gatzke et al. (2005) claimed, curvature maps are 
useful for distinguishing local shapes and finding their corresponding shape similarity 
in the shape matching problem. Thus, the curvature colour mapping technique has been 
chosen to analyse the Gaussian and mean curvature. A colour-coded map is applied on the 
surface to visualise and interpret the curvature. This research applies the colour mapping 
method on the Gaussian and mean curvature plots of different surfaces with fixed shape 
parameters (-4, -4, 1, 1) in Wolfram Mathematica. The bar legends are generated for each 
plot to identify the range of curvature values.

RESULT AND DISCUSSION
The findings of this research are presented and discussed in this section. This discussion 
focuses on the curvature analysis of the surfaces by determining a point on a surface’s 
local geometry and the surface types based on the mean and Gaussian curvature signs.

Curvature Analysis
The curvature of a surface can be calculated in a variety of ways. However, this research 
focuses on the Gaussian and mean curvature. The first and second fundamental forms 
of a surface patch are used to compute the curvature of the surface. The product of the 
principal curvatures determines the surface’s Gaussian curvature. Every positive Gaussian 
curvature point has its tangent plane touch the surface at a single point, whereas a point 
that is negative Gaussian curvature has its tangent plane cut the surface (Oxman, 2007). 
Negative or zero Gaussian curvature can be found at any place with zero mean curvature. 
The interpretation of Gaussian curvature is less clear, but it can be figured out by looking 
at surfaces with different Gaussian curvatures (Devaraj, 2020). 
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The half of the sum of the principal curvatures at a point indicates the surface’s mean 
curvature at that particular point. Surfaces that have a zero mean curvature is known as 
minimum surfaces. Thus, a minimal surface is the subset of constant mean curvature 
surfaces where the curvature is zero (Oxman, 2007). In order to analyse the surface 
curvature, the value of minimum principal curvature, kmin and maximum principal curvature, 
kmax need to be considered. Both formulas are shown as Equation 24:

(24)

Based on Marsh (2005), all the essential theories in differential geometry can be used 
to determine the local geometry of a surface, as shown in Table 1.

Table 1 
Surface’s local geometry at a point

Types of Points Property of K and H Sign of kmin and kmax

Parabolic Point K = 0, H ≠ 0 kmin or kmax = 0
Hyperbolic Point K < 0, H ≠ 0 Have opposite signs

Elliptic Point K > 0, H ≠ 0 Have the same signs

Informally, an elliptic point curve for all directions, in the same way, has the same 
principal curvature sign. On the other hand, a hyperbolic point is like a saddle point because 
the principal curvatures are of opposite signs. Meanwhile, a parabolic point has a positive 
principal curvature since the surface is non-planar but achieves a minimum curvature of 
zero in some directions. Thus, a surface around a parabolic point is like a curved piece of 
paper, where a surface seems to be flat around a planar point.

Table 2
Type of surfaces from mean and Gaussian curvature signs

K < 0 K = 0 K > 0
H < 0 saddle ridge ridge peak
H = 0 minimal surface flat not possible
H > 0 saddle valley valley pit

According to Besl (2012), the Gaussian and mean curvature signs can determine basic 
types of surfaces. Both curvatures produce eight different types of surfaces, as shown in 
Table 2 and explained in Figure 5.
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Figure 5. The eight visible-invariant HK-sign surface types [Source: Besl (2012)]

Tensor-Product Surface. Based on Figure 6a, most points of the tensor-product surface are 
hyperbolic points since H ≠ 0 and K < 0. Moreover, at a hyperbolic point, kmin and kmax have 
opposite signs, giving the surface a saddle shape. Parabolic points are obtained when, either 
point kmin or kmax equals zero, as shown in Table 3. As a result, the surface has a parabolic 
cylinder structure, and it is linear in one principal direction. The surface is referred to as 
a trough or a ridge in computer graphic applications. The elliptic point is obtained at H ≠ 
0 and K > 0. Moreover, the signs kmin and kmax are the same. 

(a) Tensor product

(a) peak surface (b) flat surface (c) ridge surface (d) saddle ridge

(e) pit surface (f) minimal surface (g) valley surface (h) saddle valley 
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Figure 6. 3D plot of the tensor-product surface with shape parameters (-4, -4, 1, 1)

Table 3
Parabolic points on tensor-product surface

(b) Gaussian curvature (c) Mean curvature

u v K H kmin kmax

0 0 0.0000 0.0424 0.0000 0.0849
0.1 0 0.0000 0.0224 0.0000 0.0448
0.2 0 0.0000 -0.0193 -0.0387 0.0000
0.3 0 0.0000 -0.0614 -0.1228 0.0000
0.4 0 0.0000 -0.0914 -0.1828 0.0000
0.5 0 0.0000 -0.1039 -0.2079 0.0000
0.6 0 0.0000 -0.0983 -0.1967 0.0000
0.7 0 0.0000 -0.0765 -0.1530 0.0000
0.8 0 0.0000 -0.0429 -0.0859 0.0000
0.9 0 0.0000 -0.0060 -0.0119 0.0000
1.0 0 0.0000 0.0212 0.0000 0.0424

By referring to Table 4, the points are (0.3, 0.3), (0.3, 0.4), (0.4, 0.2), (0.4, 0.3), (0.4, 
0.4), (0.4, 0.5), (0.5, 0.2), (0.5, 0.3), (0.5, 0.4), (0.5, 0.5), (0.5, 0.6), (0.6, 0.2), (0.6, 0.3), (0.6, 
0.4), (0.6, 0.5), (0.7, 0.3) and (0.7, 0.4) for the positive sign. Meanwhile, for the negative 
sign, the points are (0.3, 0.8), (0.3, 0.9), (0.4, 0.7), (0.4, 0.8), (0.4, 0.9), (0.5, 0.7), (0.5, 
0.8), (0.5, 0.9), (0.6, 0.7), (0.6, 0.8), (0.6, 0.9), (0.7, 0.8) and (0.7, 0.9), as shown in Table 5. 
As a result, the normal sections have the same profile, indicating the shape of an ellipsoid.



Pertanika J. Sci. & Technol. 30 (2): 1717 - 1738 (2022)1730

Anis Solehah Mohd Kamarudzaman, Nurul Huda Mohamad Nasir and Md Yushalify Misro

Based on Figure 5, there are two prominent basic surface shapes in Figure 6a. The 
red colour is a peak surface, which means the surface bulges in the direction opposite to 
the normal surface, while the blue colour represents the pit surface shape. According to 
Table 2, peak and pit surface have K > 0 but with different mean curvature values, which 
are H < 0 and H > 0, respectively. It can be validated from Figure 6b, where the Gaussian 
curvature is less than zero, and the colour is blue. Meanwhile, the mean curvature plot in 
Figure 6c shows two regions with positive and negative curvature values.

Table 4
Positive elliptic points on tensor-product surface

u v K H kmin kmax

0.3 0.3 0.0516 0.4150 0.0678 0.7622
0.3 0.4 0.0728 0.5082 0.0775 0.9390
0.4 0.2 0.0069 0.1554 0.0241 0.2866
0.4 0.3 0.2211 0.5616 0.2546 0.8686
0.4 0.4 0.3393 0.7234 0.2945 1.1523
0.4 0.5 0.0178 0.1900 0.0546 0.3254
0.5 0.2 0.0113 0.1367 0.0510 0.2223
0.5 0.3 0.3588 0.6097 0.4962 0.7231
0.5 0.4 0.6049 0.8251 0.5495 1.1007
0.5 0.5 0.0225 0.1566 0.1117 0.2014
0.5 0.6 0.0003 0.0184 0.0114 0.0255
0.6 0.2 0.0083 0.1321 0.0366 0.2276
0.6 0.3 0.2568 0.5623 0.3186 0.8061
0.6 0.4 0.4233 0.7625 0.3648 1.1601
0.6 0.5 0.0176 0.1606 0.0704 0.2508
0.7 0.3 0.0823 0.4499 0.1034 0.7963
0.7 0.4 0.1245 0.5931 0.1164 1.0698

Table 5
Negative elliptic points on tensor-product surface

u v K H kmin kmax

0.3 0.8 0.0780 -0.5509 -1.0258 -0.0761
0.3 0.9 0.0404 -0.3854 -0.7143 -0.0566
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Swept Surface. The swept surface is in Figure 7a, where the parabolic point occurs 
when H ≠ 0 and K = 0. Thus, by referring to Table 1, either kmin and kmax are equal to zero. 
Therefore, the surface assumes to be in the form of a parabolic cylinder, and this surface 
can be characterised as a ridge or a trough. The points are from (0.5, 0) until (0.5, 1), as 
demonstrated in Table 6. The elliptic point is at H ≠ 0 and K > 0, where the sign of kmin 

and kmax are the same.
As a result, the normal sections have the same profile, implying an ellipsoid form. The 

points are given by (0, 0) until (0, 2), (0, 0.8) until (0.1, 0.2), (0.1, 0.8) until (0.2, 0.2), (0.2, 
0.8) until (0.3, 0.2), (0.3, 0.8) until (0.3, 1), (0.4, 0.3) until (0.4, 0.7), (0.6, 0) until (0.6, 
0.2), (0.6, 0.8) until (0.6, 1), (0.7, 0.3) until (0.7, 0.7), (0.8, 0.3) until (0.8, 0.7), (0.9, 0.3) 
until (0.9, 0.7) and (1, 0.3) until (1, 0.7). Then, the remaining points on the swept surface 
are hyperbolic points, where H ≠ 0 and K < 0. At the hyperbolic point, kmin and kmax have 
opposite signs, implying a saddle shape.

Table 5 (Continue)

u v K H kmin kmax

0.4 0.7 0.0032 -0.1057 -0.1950 -0.0165
0.4 0.8 0.2649 -0.6267 -0.9843 -0.2692
0.4 0.9 0.1084 -0.3906 -0.6009 -0.1804
0.5 0.7 0.0067 -0.0925 -0.1355 -0.0495
0.5 0.8 0.3731 -0.6235 -0.7484 -0.4985
0.5 0.9 0.1383 -0.3719 -0.3783 -0.3655
0.6 0.7 0.0043 -0.1060 -0.1892 -0.0228
0.6 0.8 0.2595 -0.6174 -0.9662 -0.2686
0.6 0.9 0.1089 -0.3924 -0.6046 -0.1802
0.7 0.8 0.0779 -0.5432 -1.0092 -0.0772
0.7 0.9 0.0408 -0.3893 -0.7221 -0.0565
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Figure 7. 3D plot of the swept surface with shape parameters (-4, -4, 1, 1)

Table 6

Parabolic points on a swept surface

u v K H kmin kmax

0.5 0 0.0000 0.2642 0.0000 0.5284
0.5 0.1 0.0000 0.7666 0.0000 1.5333
0.5 0.2 0.0000 1.5630 0.0000 3.1260
0.5 0.3 0.0000 1.2224 0.0000 2.4449
0.5 0.4 0.0000 0.5065 0.0000 1.0131
0.5 0.5 0.0000 0.3403 0.0000 0.6806
0.5 0.6 0.0000 0.5065 0.0000 1.0131
0.5 0.7 0.0000 1.2224 0.0000 2.4449
0.5 0.8 0.0000 1.5630 0.0000 3.1260
0.5 0.9 0.0000 0.7666 0.0000 1.5333
0.5 1.0 0.0000 0.2642 0.0000 0.5284

(a) Swept surface

(c) Mean curvature(b) Gaussian curvature
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Based on the observation, Figure 7a has two prominent basic surface shapes. The left of 
the swept surface is possibly a ridged surface, implying that a line of curvature has a local 
maximum and minimum of principal curvature. In contrast, the right side of the surface 
would have a valley shape. Based on Table 2, ridge and valley shapes have K = 0 but with 
different mean curvature values of H < 0 and H > 0 , respectively. The Gaussian curvature 
plot in Figure 7b demonstrated the two regions with positive and negative curvature values. 
Roughly, the mean curvature plot in Figure 7c shows positive value regions. Therefore, 
if comparisons are made from Figures 7b and 7c, some pit surface, valley surface, saddle 
surface, and saddle ridge surface exist.

Swung Surface. Figure 8a portrays a swung surface. At point (0, 0) until (0.4, 1), kmin and 
kmax have the same sign, implying an elliptic point. As a result, the normal sections have 
the same profile, indicating an ellipsoid form. Meanwhile, at points (0.5, 0) until (1, 1), 
the signs are opposite, implying hyperbolic points. As a result, the surface has a saddle 
form. However, at points (0, 1), (0.1, 1), (0.2, 1), (0.3, 1), (0.4, 1), (0.5, 1), (0.6, 1), (0.7, 1), 
(0.8, 1), (0.9, 1), (1, 1) and (1, 0.9), either kmin and kmax equal to zero by referring to Table 7. 
Therefore, the surface is a parabolic point. As a result, the surface has a parabolic cylinder 
shape and is linear in one principal direction.

(a) Swung surface

(c) Mean curvature(b) Gaussian curvature

Figure 8. 3D plot of the swung surface with shape parameters (-4, -4, 1, 1)
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Table 7
Parabolic points on a swung surface

u v K H kmin kmax

0 1.0 0.0000 0.0822 0.0000 0.1644
0.1 1.0 0.0000 0.2272 0.0000 0.4544
0.2 1.0 0.0000 0.5225 0.0000 1.0451
0.3 1.0 0.0000 0.6398 0.0000 1.2795
0.4 1.0 0.0000 0.3093 0.0000 0.6185
0.5 1.0 0.0000 -0.0103 -0.0206 0.0000
0.6 1.0 0.0000 -0.3487 -0.6973 0.0000
0.7 1.0 0.0000 -0.6418 -1.2835 0.0000
0.8 1.0 0.0000 -0.3785 -0.7570 0.0000
0.9 1.0 0.0000 -0.1321 -0.2641 0.0000
1.0 1.0 0.0000 -0.0461 -0.0922 0.0000

Based on inspection in Figure 8a, there exist some basic surface shapes. For example, 
the red-yellow region has a pit surface shape, the green-blue and blue colour has a peak 
surface shape. Roughly, the shape of the swung surface has a saddle ridge on the top of 
the surface, while the bottom of the surface has a ridge type of surface, with the middle 
region having a valley surface. As a result, in Figures 8b and 8c, the Gaussian and mean 
curvature plot justifies the inspection of the swung surface.

Ruled Surface. We assume sweeping out a surface by moving a line. Such a surface is 
known as a ruled surface. Figure 9a demonstrates the ruled surface with shape parameters 
(-4, -4, 1, 1). There are several methods for calculating a surface’s curvature. The result 
of a ruled surface is that all the points on the surface are hyperbolic points, where the 
equivalent kmin and kmax have opposite signs.

(a) Ruled surface
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(b) Gaussian curvature (c) Mean curvature

Figure 9. 3D plot of the ruled surface with shape parameters (-4, -4, 1, 1)

Table 8
The minimal surface at a point of the ruled surface

u v K H kmin kmax

0 0.5 -1.7778 0.0000 -1.3333 1.3333

Based on Figure 5, there are notably basic surface shapes in Figure 9a: saddle ridge 
surface and saddle valley surface region. Moreover, Figure 9a resembles a minimal surface 
shape, and there is a point on the surface with zero mean curvature, as shown in Table 
8. The saddle ridge and valley surface can be verified based on Figure 9b, where most 
Gaussian curvature plots are less than zero. Meanwhile, the mean curvature plot in Figure 
9c shows two regions with positive, negative and some areas with approximately zero 
curvature values.

CONCLUSION

This work highly focuses on the Gaussian and mean curvature of different surfaces, such 
as tensor-product, swept, swung, and ruled surfaces. The Gaussian and mean curvature 
of the surfaces are calculated, and the curvatures are represented using a 3D plot with a 
colour-coded map default in Wolfram Mathematica. By visualising surface curvature, the 
geometric shape of surfaces can be determined and analysed. 

Nevertheless, the curvature plots have not been mapped on the surface. Thus, it is not 
easy to inspect the Gaussian and mean curvature on the specific region. Moreover, the 
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rainbow colours used are difficult to differentiate and detect the slight changes in curvature 
values because most of the calculated curvature values are relative to zero curvatures. 
Besides, the range scales of all the bar legends are also insensitive due to decimal places 
being rounded off. 

There are a few suggestions that can be made for future works. First, this work can be 
extended to determine the effect of a surface when a different set of shape parameters are 
used. In addition, shape index-curvedness of curvature (SC curvature) can also be another 
alternative to measure and represent curvature analysis of surfaces. 
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